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Abstract

Some efficient strategies for the active control of vibrations of a beam structure using piezoelectric
materials are described. The control algorithms have been implemented for a cantilever beam model
developed using finite element formulation. The vibration response of the beam to an impulse excitation
has been calculated numerically for the uncontrolled and the controlled cases. The essence of the method
proposed is that a feedback force in different modes be applied according to the vibration amplitude in the
respective modes i.e., modes having lesser vibration may receive lesser feedback. This weighting may be
done on the basis of either displacement or energy present in different modes. This method is compared
with existing methods of modal space control, namely the independent modal space control (IMSC), and
modified independent modal space control (MIMSC). The method is in fact an extension of the modified
independent space control with the addition that it proposes to use the sum of weighted multiple modal
forces for control. The proposed method results in a simpler feedback, which is easy to implement on a
controller. The procedure is illustrated for vibration control of a cantilever beam. The analytical results
show that the maximum feedback control voltage required in the proposed method is further reduced as
compared to existing methods of IMSC and MIMSC for similar vibration control. The limitations of the
proposed method are discussed.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

With increasing space activities, the use of lightweight and flexible structures is becoming
important to reduce the high cost of lifting the mass into orbit. Because of the flexibility, the
vibrations once introduced in the system grow to large amplitudes. The conventional form of
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external passive damping is not preferred as the addition of a damper adds to the overall system
weight, which is undesirable. This has led to extensive research into active and passive control.

In active control, the effect of an unwanted disturbance is cancelled by deliberate addition of
another disturbance, equal in magnitude but opposite in sign. Piezoelectrics (PZTs) bonded on the
structure act as sensors to monitor and as actuators to control the response of a structure. The
output of piezosensors is processed by a controller and fed to piezoactuators. Application of
voltage to an actuator introduces the force on the base structure, which is proportional to
displacement or velocity measured by sensors. This actuator force gets added to the stiffness force
or damping force, thus changing the stiffness and damping characteristics of the system
(structure). These changes, if properly adjusted, can reduce the amplitude of vibration.

Consider the case of a large-scale spacecraft structure which must be lightweight, hence it will
become flexible. When the structure begins to vibrate, its vibration will continue for a long time at
a lower natural frequency. In order that the position of the antenna and telescope is assured
precisely, it is necessary to control the vibration. This case is similar to many practical systems
where lower modes of vibration are having most of the energy and are more critical for control
purposes. Hence, in such cases the effort to control all modes of the structure will be wastage of
energy. In such cases, the system is transformed into modal space and its individual modes are
controlled.

One such technique of controlling individual modes of vibration is the Pole Allocation method
in which closed-loop poles of the system are altered to achieve a desired performance objective. In
this category fall methods like the independent modal space control (IMSC) method [1], the
modified independent space control (MIMSC) method [2], coupled control [3], etc.

2. Model of the system in modal space

The problem addressed is of controlling vibrations of a cantilever beam with a PZT patch
actuator mounted at its surface as shown in Fig. 1. Electro-dynamic modelling of this system can
be done using finite element formulation and is available in the literature [2,4-6]. The modelling
uses Euler beam elements with two nodes per element and two degrees of freedom at each node.
For the case of a piezo-patch-mounted element, the electrical strain energy is included along with
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Fig. 1. A cantilever beam mounted with a PZT patch.
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the mechanical strain energy and the electrical displacement terms are eliminated using the
electro-mechanical constitutive equations of the piezoelectric material. The equation of motion of
the system with no inherent damping present in it can be written in the form

[M{d(0)} + [K{d(0)} = [DHu()}, (1)

where [M] and [K] are, respectively, global mass and stiffness of the system including that of the
PZT patch and {d} is the displacement vector of the system. [D] is an n x m dimensional location
matrix of control force; this also includes electro-mechanical constants of the PZT patch. {u(z)} is
the m x 1 vector of feedback control voltages applied to m actuators. This matrix equation can be
reduced to a number of modal equations by using modal transformation [§]:

d@} = [Ulin(0)y;, 2)

where {7(?)} is n x 1 vector of modal harmonic time functions and [U] is the n x n ortho-normal
modal matrix which relates modal co-ordinates to generalized co-ordinates {d(¢)}. Substituting
Eq. (2) in Eq. (1) and using the standard modal analysis procedure [7] , the de-coupled modal
equations are obtained in the form

i+ 20, = g0, r=12 .., 3)

where /13 is the rth eigenvalue of the system and 4, is equal to the natural frequency of the system.
The subscript r is used to indicate quantities in the rth mode. The vector ¢(¢), defined by

'O =101, @0, ... 0] 4)
is the control vector in modal space and is related to the physical control vector u(¢) by
{q()} = [UI'[DH{u(0)} )

When feedback is applied to the system the single degree-of-freedom equation (3) gets coupled
through the modal control forces ¢,(z), since each ¢,(f) usually depends on all the modal co-
ordinates.

3. Independent modal space control method

Mierovitch and Baruh [1] developed the IMSC method for controlling vibrations of a
distributed mass body. In this method, feedback control parameters which are displacement and
velocity gains are selected as modal gains.

The modal feedback force in each mode ¢,() is designed to depend on #,(¢) and #,(¢) alone i.e.,

q4r(t) = =g (1) = Iyt (2). (6)

This avoids re-coupling of modal equations through feedback. Thus, an independent controller
can be designed for each of n modes.

The modal control forces ¢(¢) are determined using optimal control theory [7], which determines
feedback control gains by minimizing a quadratic performance index J. In the IMSC method, the
performance index considered is the sum of the potential energy (/1,2.113) and kinetic energy (57%) of
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the vibrating system as well as the required input control effort (¢;):
J= / [(/1371,2 + 173) + (qu)] dt. (7)
0

The factor R is used to weight the importance of damping the system energy with respect to the
required control effort.

Meirovitch and Baruh [1] developed closed-form solution to this problem and showed that the
above performance index attains a minimum value when the feedback gains g, and 4, are given by

gr =2y — |22+ 1/R, h,.:—\/zzr(—z,Jr (2+1/R)+1/R. (8)

Using these feedback gains, the equation of motion of the system in any mode becomes
iin(0) + Aty (1) + (27 + g),(0) = 0. ©)

This equation can be solved to determine the control response of the system in any mode.

The physically applied voltage to the actuator can be calculated from the modal control force
using relation (5). In Eq. (5), if the number of actuators is equal to the number of controlled
modes then the inverse of the [U]T[D] can be calculated to directly determine the voltages to be
applied to each actuator.

4. Modified independent modal space control method

While calculating feedback gains using the IMSC method, the previous vibration history is not
considered. Hence, there is no priority given to controlling those modes which are excited to a
greater extent by the disturbance force. Baz and Poh [2] modified the IMSC method to MIMSC to
control different modes of vibrations of distributed structures separately depending upon the
energy in each mode (/Ifnf + 1i?). Energy present in different modes is checked at specific intervals
of time and the mode with the highest energy is controlled. After some period of time when the
mode being controlled subsides and the energy in some other mode becomes maximum, the
control effort is directed towards that mode. Hence, there is shifting of control from one mode to
another depending upon their energy contents. In this way, a lesser control effort may be applied
to control structural vibrations.

5. Efficient modal control (EMC)

While controlling a vibrating system whose number of modes are excited, using modal feedback
gains selected according to the IMSC algorithm, the physically applied voltages attain high values.
This problem is largely overcome by the MIMSC method. This method uses the system
information (energy present in different modes) of disturbed system to design a control system in
which the mode having higher energy is controlled first. This way the feedback control voltage
decreases. However, there is a need to weigh and compare the modal energies present in all modes
at every instant of time. This puts computational effort on the digital controller and might lead to
delays in feedback, especially when the frequencies to be controlled are high. Thus, feedback may
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not keep up with the disturbance. The modes are ranked according to energy present in them; the
mode with maximum energy is controlled at that instant. After elapse of some time, the modal
energies in all the modes become almost equal, the shifting of modes occurs very often and a
controller has to exert an extra effort.

Rather than simultaneous control of different modes (IMSC) or sequential mode (MIMSC), the
information about the uncontrolled system response can be utilized to tailor the control forces.
The objective is to reduce the amplitude of vibration to some acceptable level with application of
the least control force in a minimum period of time. It can be observed from the results of IMSC
that optimal feedback gains are higher for higher modes of vibration but the amplitude of
vibration is generally low in these modes.

If the criterion of an acceptable level of amplitude of vibration is set to be the goal, the time
taken for achieving this amplitude depends upon the initial amplitude of vibration for the same
value of damping. Hence, while controlling a number of modes simultaneously, to modes having
lesser amplitude can be applied a lesser amount of active damping. Such a technique is proposed
as an EMC strategy, in which modal feedback gains are weighted according to relative modal
displacement or energy in that mode.

Here, it is important to note that the proposed method, just like any modal control method
requires modal quantities to be measured. In case of free vibration, each mode vibrates at its own
frequency, and in the overall response there is frequency-based coupling between modes. There, a
frequency filter can be used to separate the modal displacements. Whereas, in forced vibrations
the amplitude coupling is present, the response of the structure is estimated using an observer and
the modal quantities are calculated using the mode shape functions. This requirement of a modal
sensor in any modal control method is also present in the proposed method.

5.1. Weighting of the control force according to displacement in each mode

The fast Fourier transform (FFT) of uncontrolled system response is taken. The ratio of
amplitudes in different modes is calculated with respect to the mode having maximum amplitude.
The feedback gains in modes having less amplitude are reduced by their respective ratios. Thus, if
the feedback control gains are to be applied for controlling ith, jth and kth modes, then the gain
ratios are set by

Feedback in mode i: Feedback in mode j: Feedback in mode k

_ - displacement(j) displacement(k) (10)
~ displacement(i) * displacement(i)’

5.2. Weighting of the control force according to energy in each mode and frequency weighting

An alternate way of weighting the modes is according to modal energy in each mode. Baz and
Poh [2] have also used energy weighting to prioritize different modes. Secondly, a factor is
provided for frequency weighting since a mode with higher frequency will execute more number of
cycles in the same interval of time, hence it is needed to provide less damping in that mode. Thus,
if feedback gains need to be applied to the ith, jth and kth modes, the criteria for controlling the
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ith, jth and kth modes is
Feedback in mode i: Feedback in mode j: Feedbaack in mode k
_energy(j) " Srequency(i) energy(k)  frequency(i)
“energy(i)  frequency(j) ~ energy(i) = frequency(k)

(11)

6. Results and discussion
6.1. Properties of the system

Studies are conducted on a cantilever beam made of mild steel and mounted with a PZT patch
on its surface. The physical and geometrical properties of the test beam and PZT patch are given
in Table 1.

For the studies presented here, the PZT element is mounted about 20 mm away from the root of
the cantilever beam. Using relation (8) with R = 100 the optimal feedback gains for the first few
modes of the given cantilever beam are as given in Table 2.

One can apply all modal feedback gains to control all modes of the system or single modal
feedback gain can be applied to control a dominating mode. To achieve simultaneous control of
more than one mode, the modal feedback forces are calculated for each individual mode. These
feedback forces are converted to physical forces at the same actuator. The physical actuator forces
coming from different modes are added to give the resultant force required at the actuator
location. This could be done because different modes of the system are linearly independent for a
given structure. Each force has its own independent effect. Since the forces are vectorially added
and these forces are directly proportional to the voltage to be applied to the piezocrystal, the

Table 1

Main geometrical and physical properties of test beam

Material Length Width Thickness PZT constant Density Young’s modulus
(mm) (mm) (mm) (d31) (kg/m?) (N/m?)

Steel beam 146.3 4.65 1.8 — 7800 2.1ell

PZT actuator 20.9 11.62 1.06 180e—12 7500 5el0

Table 2

Optimal feedback gains in different modes

Mode number Displacement gain Velocity gain

1 1.424e3 75.526

2 5.163¢e4 454.728

3 3.728e5 1.222€3

4 1.312e6 2.292¢3

5 3.3778e6 3.678e3

6 7.465e6 5.468¢3
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voltages (coming from different mode control requirements) can be added to get the total voltage
to be applied to the PZT crystal.

An impulse load is applied at the tip of the cantilever beam. This load excites more than one
mode of the system. The uncontrolled response at the tip of the beam for this excitation is given in
Fig. 2. The FFT of the uncontrolled response is as in Fig. 3. The control studies as per different
algorithms are presented in the following sections.
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Fig. 2. Uncontrolled response of beam due to excitation of first three modes.
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Fig. 3. FFT of the uncontrolled response.
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6.2. Independent modal space control

The control of the first three modes of the system is achieved using IMSC. Optimal modal
feedback gains are applied to the modal displacement and modal velocity in each mode. The
physical feedback voltages calculated for each mode are added up and applied to the actuator.
Fig. 4(a) shows the controlled response of the beam. With this configuration and weighting factor,
the overall amplitude dies from the initial value of about 8.2 x 107 to 0.2 x 10~* in about 0.1s.
Fig. 4(b) gives a plot of the feedback voltage required to be applied to the actuator crystal. The
maximum control voltage requirement is about 1200 V.

6.3. EMC using displacement weighting

From the FFT of the response taken in Fig. 3, the displacement amplitudes in three modes were
found to have a ratio of 1:0.2525:0.0727. Thus, optimal gains in the second and third modes are
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Fig. 4. (a) Controlled response at tip of beam due to feedback force applied according to IMSC. (b) Feedback voltage
applied according to IMSC.
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reduced by these ratios as per Eq. (10). Fig. 5(a) gives the response at the tip of the beam when
these gains are applied. A comparison of Figs. 4(a) and 5(a) indicates that EMC gives almost the
same settling time as IMSC. The difference lies in the control achieved on higher modes, which are
now receiving reduced control effort. Comparing Fig. 5(b) of feedback voltages with Fig. 4(b)
clearly shows that there is a reduction in maximum feedback voltage applied to the actuator in the
EMC. The maximum control voltage required in IMSC is 1200 V as compared to only 650V in the
EMC.

6.4. EMC using energy weighting
The modal energies (sum of the potential energy (/lfnf) and kinetic energy (1j%)) in the first three

modes are calculated as 4.5608e—004, 4.2644e—004 and 3.4825e-004, respectively, and the first
three natural frequencies are 78, 405 and 1089 Hz, respectively. Using energy/frequency as the
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Fig. 5. (a) Controlled response at tip of beam due to feedback force applied according to EMC, with displacement
weighting. (b) Feedback voltage applied to the actuator.
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weighting parameter, the weighting of control force is

42644e—4 78 348254 T8

' 4.5608c 4 <205 4.5608c 4 <Togo _ | - 0-1801:0.0547.

When the control force is applied by using these weighting factors on the modal contributions,
the response at the tip of the beam for this case is as shown in Fig. 6(a). The corresponding
feedback voltages are given in Fig. 6(b). Comparing the feedback voltages required (Fig. 6(b))
with that for IMSC (Fig. 4(b)) shows that there is a significant reduction in amplitude of the
feedback voltage applied to the actuator whereas the control remains more or less the same.
In comparison with Fig. 5(b), there is further reduction in the maximum feedback voltage
required from 650 to 600 V. Also, a careful comparison of Figs. 6(a) and 5(a) reveals that in the
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Fig. 6. (a) Controlled response at tip of beam due to feedback force applied according to EMC with energy weighting.
(b) Feedback voltage applied according to EMC energy weighting.
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energy-weighted approach, higher modes have been slower to decay and their decay is almost
complete by the time fundamental mode diminishes out.

6.5. Comparison with MIMSC

The MIMSC method developed by Baz evaluates the modal energy present in each mode and
control is applied to the mode having the highest energy. The method was applied for the same
case, with energy weight being updated after every 0.1 ms. The controlled displacement at the tip
of the beam is given in Fig. 7(a) when feedback gain according to MIMSC is applied to the beam.
The feedback voltage applied to the actuator is given in Fig. 7(b).
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Table 3

Comparison table for various modal control strategies.

Method Initial displacement (mm) Peak voltage (V) Settling time (s)
Uncontrolled 1.0 — —

IMSC 0.82 1200 0.1

MIMSC 0.92 590 0.11

EMC (displacement weighted) 0.9 620 0.1

EMC (energy weighted) 0.9 600 0.1

It can be seen that in this case the maximum feedback voltage is almost of the same order
as for EMC. However the graph in Fig. 7(b) shows that at the time of mode switching, there
is an abrupt change in feedback voltage. If energy is weighted at each instant and feedback is
applied to the mode having the highest energy, after some time the modal energy in all
modes becomes almost equal and it becomes difficult to shift control from one mode to another
mode at every instant. The time interval between two weightings may be increased in order to
decrease the shifting of control. Comparing the feedback in MIMSC with feedback voltage
applied in EMC, it is clear that the maximum voltage applied in the two cases is approximately the
same but in MIMSC the energy in each mode needs to be calculated and compared each fixed
interval of time. In the case of EMC, the weighting may be done once for controlling a
disturbance and the controller can supply fixed feedback gains after that. Hence the time for
online computing is reduced. In that sense this method is similar to IMSC in which fixed gains are
applied.

7. Conclusions

In IMSC, optimal feedback gains are found to be independent of the kind of applied force.
When feedback is applied to control modes of vibration, feedback control voltages are found to
be very high. EMC which compares the displacement or energy present in each mode to weight
the feedback control force applied is proposed. Comparing these methods for controlling the first
three modes of a cantilever beam shows that there is a large reduction in maximum amplitude of
the feedback voltage applied to the actuator in case of EMC without much change in control
effectiveness.

Comparison of this method with MIMSC shows that the maximum feedback voltage applied in
two cases is similar but EMC is easier to implement practically since it uses fixed gains. There are
no abrupt changes in feedback voltages and time for online computing is also reduced which is a
critical consideration while controlling relatively high frequencies. A summary of comparison of
the three modal control methods is presented in Table 3, for the example of cantilever beam
analyzed in this work. However, there is one important limitation in the fixed gain technique that
if the structural vibration nature changes due to changes in disturbances, then the gains no longer
remain optimal. In that case, an updating procedure as proposed in MIMSC may be needed to
increase control effectiveness.
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